深度学习入门之PyTorch【售后无忧】 fb2 pdf azw3 网盘 rtf 免费 下载 txt

深度学习入门之PyTorch【售后无忧】电子书下载地址
寄语:
[正版书籍,现货速发,满减优惠,可开电子发票]
内容简介:
《深度学习入门之PyTorch》深度学习如今已经成为科技领域最炙手可热的技术,在《深度学习入门之PyTorch》中,我们将帮助你入门深度学习。《深度学习入门之PyTorch》将从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型。通过阅读《深度学习入门之PyTorch》,你将学到机器学习中的线性回归和 Logistic 回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络,以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果,以及 PyTorch 在实际项目中的应用。《深度学习入门之PyTorch》将理论和代码相结合,帮助读者更好地入门深度学习,适合任何对深度学习感兴趣的人阅读。
书籍目录:
章深度学习介绍1
1.1 人工智能. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 数据挖掘、机器学习与深度学习. . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 数据挖掘. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 机器学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 深度学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 学习资源与建议. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第2 章深度学习框架11
2.1 深度学习框架介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 PyTorch 介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 什么是PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 为何要使用PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 配置PyTorch 深度学习环境. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 操作的选择. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Python 开发环境的安装. . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 PyTorch 的安装. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
第3 章多层全连接神经网络24
3.1 热身:PyTorch 基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 Tensor(张量) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Variable(变量) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Dataset(数据集) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4 nn.Module(模组) . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.5 torch.optim(优化) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.6 模型的保存和加载. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 线性模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 一维线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 多维线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 一维线性回归的代码实现. . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 多项式回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 分类问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Logistic 起源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Logistic 分布. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 二分类的Logistic 回归. . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.5 模型的参数估计. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.6 Logistic 回归的代码实现. . . . . . . . . . . . . . . . . . . . . . . 45
3.4 简单的多层全连接前向网络. . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 模拟神经元. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 单层神经网络的分类器. . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.4 神经网络的结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.5 模型的表示能力与容量. . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 深度学习的基石:反向传播算法. . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 链式法则. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 反向传播算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.3 Sigmoid 函数举例. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 各种优化算法的变式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.1 梯度下降法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.2 梯度下降法的变式. . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 处理数据和训练模型的技巧. . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.1 数据预处理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.2 权重初始化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.3 防止过拟合. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8 多层全连接神经网络实现MNIST 手写数字分类. . . . . . . . . . . . . . 69
3.8.1 简单的三层全连接神经网络. . . . . . . . . . . . . . . . . . . . . 70
3.8.2 添加激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8.3 添加批标准化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.8.4 训练网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
第4 章卷积神经网络76
4.1 主要任务及起源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 卷积神经网络的原理和结构. . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 卷积层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 池化层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3 全连接层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.4 卷积神经网络的基本形式. . . . . . . . . . . . . . . . . . . . . . 85
4.3 PyTorch 卷积模块. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.1 卷积层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 池化层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.3 提取层结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.4 如何提取参数及自定义初始化. . . . . . . . . . . . . . . . . . . . 91
4.4 卷积神经网络案例分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 LeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.3 VGGNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.5 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 再实现MNIST 手写数字分类. . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 图像增强的方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7 实现cifar10 分类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
第5 章循环神经网络111
5.1 循环神经网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.2 循环神经网络的基本结构. . . . . . . . . . . . . . . . . . . . . . 112
5.1.3 存在的问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 循环神经网络的变式:LSTM 与GRU . . . . . . . . . . . . . . . . . . . . 116
5.2.1 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.2 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.3 收敛性问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 循环神经网络的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.1 PyTorch 的循环网络模块. . . . . . . . . . . . . . . . . . . . . . . 122
5.3.2 实例介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4 自然语言处理的应用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.1 词嵌入. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2 词嵌入的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.3 N Gram 模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.4 单词预测的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . 134
5.4.5 词性判断. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4.6 词性判断的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . 137
5.5 循环神经网络
作者介绍:
廖星宇,目前就读于中国科学技术大学应用数学系,获得国家一等奖学金。在个人博客、知乎等平台上发布多篇关于深度学习的文章,具有的阅读量和人气。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
《深度学习入门之PyTorch》深度学习如今已经成为科技领域最炙手可热的技术,在《深度学习入门之PyTorch》中,我们将帮助你入门深度学习。《深度学习入门之PyTorch》将从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型。通过阅读《深度学习入门之PyTorch》,你将学到机器学习中的线性回归和 Logistic 回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络,以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果,以及 PyTorch 在实际项目中的应用。《深度学习入门之PyTorch》将理论和代码相结合,帮助读者更好地入门深度学习,适合任何对深度学习感兴趣的人阅读。
网站评分
书籍多样性:7分
书籍信息完全性:5分
网站更新速度:5分
使用便利性:9分
书籍清晰度:4分
书籍格式兼容性:6分
是否包含广告:9分
加载速度:8分
安全性:9分
稳定性:8分
搜索功能:4分
下载便捷性:6分
下载点评
- 快捷(486+)
- 一般般(520+)
- 经典(679+)
- 微信读书(416+)
- 无水印(616+)
- 赚了(199+)
- 目录完整(584+)
- mobi(92+)
- 愉快的找书体验(526+)
- 服务好(243+)
下载评价
- 网友 辛***玮:
页面不错 整体风格喜欢
- 网友 邱***洋:
不错,支持的格式很多
- 网友 堵***格:
OK,还可以
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
- 网友 家***丝:
好6666666
- 网友 宫***玉:
我说完了。
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
- 网友 堵***洁:
好用,支持
喜欢"深度学习入门之PyTorch【售后无忧】"的人也看了
胃与胃肿瘤:您需要了解的知识 上海科学技术出版社 fb2 pdf azw3 网盘 rtf 免费 下载 txt
2023国家统一法律职业资格考试分类法规随身查:商法(2023飞跃版) fb2 pdf azw3 网盘 rtf 免费 下载 txt
房地产合同管理 fb2 pdf azw3 网盘 rtf 免费 下载 txt
【中商原版】薛丁格的猫 50个改变历史的物理学实验 港台原版 亚当.哈特-戴维斯 大石国际文化 科普 fb2 pdf azw3 网盘 rtf 免费 下载 txt
尼尔斯骑鹅旅行记 吉林美术出版社 fb2 pdf azw3 网盘 rtf 免费 下载 txt
财务会计 fb2 pdf azw3 网盘 rtf 免费 下载 txt
六爻玄机 fb2 pdf azw3 网盘 rtf 免费 下载 txt
高情商HR的底层逻辑 fb2 pdf azw3 网盘 rtf 免费 下载 txt
Bear's Loose Tooth fb2 pdf azw3 网盘 rtf 免费 下载 txt
英文求职信写作对比修辞研究(英文版)/外语文化教学论丛/高海燕/浙江大学出版社 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 水仙月的赋格 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 图解在家做药膳 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 嵌入式协议栈μC/USB Device fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 收藏圈:一个文物工作者的防骗手记 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 衰老与抗衰老学 田清涞,田枫 编著 中国社会出版社【正版保证】 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 上海课本配套新教材全解 英语N牛津 8/八年级第二学期下册沪教版自营同款 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 中华人民共和国行政许可法 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 高二历史(下人教版)/教材动态全解 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- OFFCL US NAVY SEAL WKOUT 2E(ISBN=9781578261222) 英文原版 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 中国金融教育论坛文集.2014:新科技革命与中国金融教育改革 中国高等教育学会高等财经教育分会金融学专业协作组年刊编辑委会员会 编 fb2 pdf azw3 网盘 rtf 免费 下载 txt
书籍真实打分
故事情节:6分
人物塑造:6分
主题深度:6分
文字风格:3分
语言运用:3分
文笔流畅:9分
思想传递:8分
知识深度:7分
知识广度:7分
实用性:5分
章节划分:9分
结构布局:7分
新颖与独特:8分
情感共鸣:4分
引人入胜:5分
现实相关:6分
沉浸感:4分
事实准确性:5分
文化贡献:8分