Making sense of data了解数据:探索数据分析与数据挖掘实用指南 fb2 pdf azw3 网盘 rtf 免费 下载 txt

Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书下载地址
- 文件名
- [epub 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 epub格式电子书
- [azw3 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3格式电子书
- [pdf 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf格式电子书
- [txt 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 txt格式电子书
- [mobi 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi格式电子书
- [word 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 word格式电子书
- [kindle 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 kindle格式电子书
内容简介:
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
书籍目录:
Preface
1 Introduction
1.1 Overview
1.2 Problem definition
1.3 Data preparation
1.4 Implementation of the analysis
1.5 Deployment of the results
1.6 Book outline
1.7 Summary
1.8 Further reading
2 Definition
2.1 Overview
2.2 Objectives
2.3 Deliverables
2.4 Roles and responsibilities
2.5 Project plan
2.6 Case study
2.6.1 Overview
2.6.2 Problem
2.6.3 Deliverables
2.6.4 Roles and responsibilities
2.6.5 Current situation
2.6.6 Timetable and budget
2.6.7 Cost/benefit analysis
2.7 Summary
2.8 Further reading
3 Preparation
3.1 Overview
3.2 Data sources
3.3 Data understanding
3.3.1 Data tables
3.3.2 Continuous and discrete variables
3.3.3 Scales of measurement
3.3.4 Roles in analysis
3.3.5 Frequency distribution
3.4 Data preparation
3.4.1 Overview
3.4.2 Cleaning the data
3.4.3 Removing variables
3.4.4 Data transformations
3.4.5 Segmentation
3.5 Summary
3.6 Exercises
3.7 Further reading
4 Tables and graphs
4.1 Introduction
4.2 Tables
4.2.1 Data tables
4.2.2 Contingency tables
4.2.3 Summary tables
4.3 Graphs
4.3.1 Overview
4.3.2 Frequency polygrams and histograms
4.3.3 Scatterplots
4.3.4 Box plots
4.3.5 Multiple graphs
4.4 Summary
4.5 Exercises
4.6 Further reading
5 Statistics
5.1 Overview
5.2 Descriptive statistics
5.2.1 Overview
5.2.2 Central tendency
5.2.3 Variation
5.2.4 Shape
5.2.5 Example
5.3 Inferential statistics
5.3.1 Overview
5.3.2 Confidence intervals
5.3.3 Hypothesis tests
5.3.4 Chi-square
5.3.5 One-way analysis of variance
5.4 Comparative statistics
5.4.1 Overview
5.4.2 Visualizing relationships
5.4.3 Correlation coefficient (r)
5.4.4 Correlation analysis for more than two variables
5.5 Summary
5.6 Exercises
5.7 Further reading
6 Grouping
6.1 Introduction
6.1.1 Overview
6.1.2 Grouping by values or ranges
6.1.3 Similarity measures
6.1.4 Grouping approaches
6.2 Clustering
6.2.1 Overview
6.2.2 Hierarchical agglomerative clustering
6.2.3 K-means clustering
6.3 Associative rules
6.3.1 Overview
6.3.2 Grouping by value combinations
6.3.3 Extracting rules from groups
6.3.4 Example
6.4 Decision trees
6.4.1 Overview
6.4.2 Tree generation
6.4.3 Splitting criteria
6.4.4 Example
6.5 Summary
6.6 Exercises
6.7 Further reading
7 Prediction
7.1 Introduction
7.1.1 Overview
7.1.2 Classification
7.1.3 Regression
7.1.4 Building a prediction model
7.1.5 Applying a prediction model
7.2 Simple regression models
7.2.1 Overview
7.2.2 Simple linear regression
7.2.3 Simple nonlinear regression
7.3 K-nearest neighbors
7.3.1 Overview
7.3.2 Learning
7.3.3 Prediction
7.4 Classification and regression trees
7.4.1 Overview
7.4.2 Predicting using decision trees
7.4.3 Example
7.5 Neural networks
7.5.1 Overview
7.5.2 Neural network layers
7.5.3 Node calculations
7.5.4 Neural network predictions
7.5.5 Learning process
7.5.6 Backpropagation
7.5.7 Using neural networks
7.5.8 Example
7.6 Other methods
7.7 Summary
7.8 Exercises
7.9 Further reading
8 Deployment
8.1 Overview
8.2 Deliverables
8.3 Activities
8.4 Deployment scenarios
8.5 Summary
8.6 Further reading
9 Conclusions
9.1 Summary of process
9.2 Example
9.2.1 Problem overview
9.2.2 Problem definition
9.2.3 Data preparation
9.2.4 Implementation of the analysis
9.2.5 Deployment of the results
9.3 Advanced data mining
9.3.1 Overview
9.3.2 Text data mining
9.3.3 Time series data mining
9.3.4 Sequence data mining
9.4 Further reading
Appendix A Statistical tables
A.1 Normal distribution
A.2 Student’s t-distribution
A.3 Chi-square distribution
A.4 F-distribution
Appendix B Answers to exercises
Glossary
Bibliography
Index
作者介绍:
GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
网站评分
书籍多样性:4分
书籍信息完全性:4分
网站更新速度:7分
使用便利性:8分
书籍清晰度:6分
书籍格式兼容性:5分
是否包含广告:5分
加载速度:4分
安全性:7分
稳定性:8分
搜索功能:6分
下载便捷性:9分
下载点评
- 速度慢(345+)
- 不亏(459+)
- 无颠倒(602+)
- 内容完整(414+)
- 差评少(347+)
- 全格式(515+)
- 值得下载(621+)
- 傻瓜式服务(388+)
- 下载快(650+)
下载评价
- 网友 权***波:
收费就是好,还可以多种搜索,实在不行直接留言,24小时没发到你邮箱自动退款的!
- 网友 养***秋:
我是新来的考古学家
- 网友 芮***枫:
有点意思的网站,赞一个真心好好好 哈哈
- 网友 马***偲:
好 很好 非常好 无比的好 史上最好的
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 寿***芳:
可以在线转化哦
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 孙***夏:
中评,比上不足比下有余
- 网友 蓬***之:
好棒good
- 网友 田***珊:
可以就是有些书搜不到
- 网友 沈***松:
挺好的,不错
喜欢"Making sense of data了解数据:探索数据分析与数据挖掘实用指南"的人也看了
中国学生综合素质教育必读书 fb2 pdf azw3 网盘 rtf 免费 下载 txt
地心探险记 法文全译插图本 港台原版 儒勒 凡尔纳 好读 fb2 pdf azw3 网盘 rtf 免费 下载 txt
现代胶黏剂应用技术手册 fb2 pdf azw3 网盘 rtf 免费 下载 txt
中国香事[精装大本] fb2 pdf azw3 网盘 rtf 免费 下载 txt
新编剑桥商务英语证书考试指南(高级) fb2 pdf azw3 网盘 rtf 免费 下载 txt
医生最想让你做的事 fb2 pdf azw3 网盘 rtf 免费 下载 txt
中华人民共和国海上交通安全法、民用航空法(中英对照) fb2 pdf azw3 网盘 rtf 免费 下载 txt
我可不怕十三岁 浙江少年儿童出版社 fb2 pdf azw3 网盘 rtf 免费 下载 txt
城镇燃气安全检查及整改指南 fb2 pdf azw3 网盘 rtf 免费 下载 txt
A B C(汉英对照)/幼儿认知百科全书 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 煤炭气化技术 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 当代建筑理论 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 巴赫键盘作品全集·数字版(配CD) fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 纸崩 (英)丽莎`威廉森(Lisa Williamson) 著 王紫薇 译 英国文学/欧洲文学文学 正版图书籍 百花洲文艺出版社 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- JavaScript 悟道 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 协同护理 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 空中交通流量管理策略与应用 康瑞,周天琦 编 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 国家示范性高等职业教育土建类“十二五”规划教材:建设工程招标与投标 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 全国重点大学自主招生通用教程 数学 fb2 pdf azw3 网盘 rtf 免费 下载 txt
- 日韩词典 fb2 pdf azw3 网盘 rtf 免费 下载 txt
书籍真实打分
故事情节:9分
人物塑造:9分
主题深度:9分
文字风格:6分
语言运用:5分
文笔流畅:3分
思想传递:6分
知识深度:6分
知识广度:3分
实用性:3分
章节划分:6分
结构布局:5分
新颖与独特:9分
情感共鸣:9分
引人入胜:4分
现实相关:3分
沉浸感:3分
事实准确性:6分
文化贡献:4分